DeutschEnglish

Quantenphysik: Neue Messmethode macht Elektronendichte in Festkörpern direkt sichtbar

http://uni-koeln.de/

Erstmal ist es Forscherinnen und Forschern gelungen, elektronische Orbitale in Kristallen sichtbar zu machen. Die sogenannten orbitalen Zustände beschreiben in der Quantenmechanik, wo sich die Elektronen eines Atoms, Moleküls oder Festkörpers wahrscheinlich im Raum aufhalten. Bislang konnte man diese Elektronendichten jedoch nicht mit letztendlicher Sicherheit darstellen. Die neue, methodisch wegweisende Arbeit ist eine Kooperation der Universität zu Köln (UzK), des Max-Planck-Instituts für Chemische Physik fester Stoffe (MPI-CPfS) in Dresden, der Universität Heidelberg und des Deutschen Elektronen-Synchrotrons DESY in Hamburg und wurde im Fachjournal „Nature Physics“ veröffentlicht.

Die Kenntnis der orbitalen Zustände ist grundlegend für das Verständnis von chemischen Bindungen und den einhergehenden physikalischen Eigenschaften. Versteht man, wie die komplexen Zusammenhänge funktionieren und wie Verbindungen von Elementarteilchen aufgebaut sind, wird es möglich, diese nachzubilden und beispielsweise neue Materialien mit spezifischen Eigenschaften zu designen.

Eine neue Methode, die die lokalen quantenmechanischen Objekte in Festkörpern direkt abbildet und sichtbar macht, haben Teams von Dr. Andrea Severing (II. Physikalischen Institut der Universität zu Köln), Prof. Liu Hao Tjeng (MPI-CPfS) und Prof. Maurits Haverkort (Universität Heidelberg) an einer Messstation am Deutschen Elektronen-Synchrotron DESY konzipiert und getestet. Hierzu konstruierten die Forscherinnen und Forscher eine Messstation, mit der man lokale Elektronendichten (die orbitalen Zustände) ohne weitere mathematische Auswertungen direkt abbilden kann. Dies ist ihnen anhand von Nickel-Ionen (Ni 2+) in Nickeloxid (NiO) gelungen.

Inhaltlicher Kontakt:        
Dr. Andrea Severing
II. Physikalisches Institut der Universität zu Köln
+49 221 470-2608
severing(at)ph2.uni-koeln.de

Presse und Kommunikation:
Jan Voelkel
+49 221 470-2356
j.voelkel(at)verw.uni-koeln.de

Zur Publikation:
https://www.nature.com/articles/s41567-019-0471-2