Größter molekularer Spin nahe eines Quantenphasenübergangs gefunden
Internationales Forschungsprojekt im Grenzbereich von Physik und Chemie
Ein
internationales Forschungsteam um Professorin Dr. Annie Powell,
Chemikerin am Karlsruher Institut für Technologie (KIT), und Professor
Dr. Jürgen Schnack, Physiker an der Universität Bielefeld, hat ein neues
magnetisches Molekül synthetisiert. Es hat nachgewiesen, dass dieses
den größten bisher erreichten Grundzustandsspin aufweist und stellt
seine neuen Erkenntnisse heute (26.02.2018) im neuen Nature Partner
Journal „npj Quantum Materials“ vor. An den Untersuchungen beteiligt
waren neun Wissenschaftlerinnen und Wissenschaftler der Universität
Bielefeld, des KIT, der Universität Magdeburg sowie der Università di
Modena e Reggio Emilia (Italien).
Jedes einzelne Elektron besitzt einen quantenmechanischen
Eigendrehimpuls, auch Spin genannt. Das neue, an der Universität
Bielefeld modellierte und am KIT synthetisierte magnetische Molekül
weist im Grundzustand einen Spin auf, der so groß ist wie der von 120
Elektronen zusammen. Es handelt sich demnach um den größten Spin, der
bisher in einem einzelnen Molekül erreicht wurde. Magnetische Moleküle
sind Moleküle, die magnetische Ionen wie Eisen oder Gadolinium
enthalten. Das magnetische Molekül, das die Forschungsgruppe
synthetisiert und untersucht hat, wird „Fe10Gd10“ abgekürzt. Es hat die
geometrische Struktur eines Torus, ähnlich der eines Rettungsrings.
„Im Fall des neuen Moleküls kommt eine unerwartete Eigenschaft hinzu, die auch ganz andere Anwendungen ermöglicht“, sagt Jürgen Schnack. Die Wissenschaftlerinnen und Wissenschaftler des interdisziplinären Forschungsprojektes fanden nämlich weiter heraus: Es gibt einen sogenannten Quantenphasenübergang, der die Eigenschaft des Moleküls stark beeinflusst. Bei Quantenphasenübergängen ändern Substanzen ihr Verhalten an sogenannten quantenkritischen Punkten fundamental. Bekannt sind „klassische“ Phasenübergänge zum Beispiel bei Wasser, das bei Überschreiten einer bestimmten Temperatur zu kochen beginnt. Quantenphasenübergänge finden beim absoluten Temperaturnullpunkt statt. In dem neu synthetisierten Molekül Fe10Gd10 sind beim Übergang zehntausende Zustände entartet. Das heißt, sie haben die gleiche Energie. Auf dieser absolut ebenen Energiefläche kann ohne Energieaufwand zwischen den einzelnen Zuständen hin- und hergeschaltet werden. Die thermodynamische Größe Entropie nimmt in so einer Situation riesige Werte an. „Es ist, als würde man auf einem hohen, spitzen Berg stehen“, erklärt Annie Powell. „Eine kleine Änderung der äußeren Bedingungen, zum Beispiel des Drucks, reicht aus und es geht sofort steil abwärts.“ In Zukunft soll daher untersucht werden, wie sich das Molekül Fe10Gd10 durch äußeren Druck über den quantenkritischen Punkt führen lässt.
Jürgen Schnack forscht seit etwa 20 Jahren in weltweiten Verbünden an magnetischen Molekülen. Das Ziel der Erforschung magnetischer Moleküle besteht darin, sie passgenau für verschiedene Zwecke zu konstruieren, z.B. als Nano-Datenspeicher oder als Kühlmoleküle.
Originalveröffentlichung: Amer Baniodeh, Nicola Magnani, Yanhua Lan, Gernot Buth, Christopher E. Anson, Johannes Rich-ter, Marco Affronte, Jürgen Schnack, Annie K. Powell, High Spin Cycles: Topping the Spin Record for a Single Molecule verging on Quantum Criticality, npj quantum materials, doi:10.1038/s41535-018-0082-7, erschienen am 26. Februar 2018, Link: https://www.nature.com/articles/s41535-018-0082-7
Weitere Informationen: • Homepage Professor Dr. Jürgen Schnack, Link: http://obelix.physik.uni-bielefeld.de/~schnack/index-research.html • Pressemitteilung „Kühlen mit Molekülen“ (22.10.2014), Link: https://ekvv.uni-bielefeld.de/blog/uniaktuell/entry/kühlen_mit_molekülen
Kontakt: Prof. Dr. Jürgen Schnack, Universität Bielefeld Fakultät für Physik Telefon 0521 106-6193, -6901 (Sekretariat) E-Mail: jschnack@uni-bielefeld.de