DeutschEnglish

Was im Stahl für Ordnung sorgt

Ruhr-Universität Bochum

Kohlenstoffatome spielen für die Festigkeit von Stahl eine wichtige Rolle. Doch auch in Stählen, die schon seit Jahrzehnten im Einsatz sind, war das kollektive Verhalten dieser Atome bisher nicht vollständig verstanden. Eine gemeinsame Arbeit an der RUB und dem Max-Planck-Institut für Eisenforschung hat Licht ins Dunkel gebracht: Das Wechselspiel zwischen den Kohlenstoffatomen, den durch sie verursachten Verzerrungen des Kristallgitters und den Gitterbaufehlern im Stahl ist für die energetischen Vorlieben der einzelnen Kohlenstoffatome entscheidend. Mit diesem Verständnis lässt sich die Herstellung von hochfesten Werkstoffen genauer steuern. Darüber berichtet die Zeitschrift Nature Materials am 4. Mai 2020.

Die wichtigsten Bestandteile von Stahl sind die Elemente Eisen und Kohlenstoff. Entscheidend für die Festigkeit dieses Materials ist aber nicht in erster Linie das Mischungsverhältnis, sondern die Verteilung der Kohlenstoffatome. Nehmen sie nach der Stahlherstellung eine bestimmte Ordnung ein, sprechen die Experten von Martensit.

Eigentlich wäre noch genug Platz für Kohlenstoffatome
Die Details der Bildung dieser Struktur gaben der Forschung allerdings jahrzehntelang Rätsel auf: Bis zu einer bestimmten Konzentration von Kohlenstoff sammeln sich die Kohlenstoffatome aus energetischen Gründen an Grenzflächen und Defekten im Gitter der Eisenatome an. Steigt die Kohlenstoffkonzentration über einen bestimmten Wert, findet sich der Überschuss der Kohlenstoffatome nicht mehr an solchen Defekten, obwohl dort eigentlich noch genug Platz wäre. Vielmehr verteilen sich die C-Atome ab dieser Konzentration auf eine bestimmte, geordnete Weise im Kristallgitter. „Dabei ist der Abstand der Kohlenstoffatome im Gitter eigentlich viel zu groß, um eine solche Ordnung chemisch zu begründen“, so Dr. Jutta Rogal vom Interdisciplinary Centre for Advanced Materials Simulation Icams der RUB.

Warum das so ist, hat das interdisziplinäre Team durch eine Kombination von theoretischen Berechnungen und Experimenten herausgefunden. Zwei Aspekte sind dafür von Bedeutung: Für das Kippen zwischen der Ansammlung von Kohlenstoffatomen an Defekten hin zu einem geordneten Aufsuchen bestimmter Plätze im Metallgitter sorgen stark anharmonische Verzerrungen der Gittermatrix in bestimmte kristallographische Richtungen. Will man also die Prozesse der Werkstoffherstellung steuern, muss man diese Grundlagen in ihren komplexen Zusammenhängen kennen.