DeutschEnglish

Kleiden wie ein Pfau: Lebhafte Farben durch Nanotechnologie

Farben werden auf unterschiedliche Arten erzeugt: Die bekannteste sind Farbpigmente. Die besonders lebhaften Farben der blauen Vogelspinne oder auch auf Pfauenfedern entstehen aber nicht durch Pigmente, sondern durch Nanostrukturen, durch die sich Lichtwellen bei der Reflexion überlagern. Dabei entstehen außergewöhnlich dynamische Farbeffekte. Wissenschaftlern unter Beteiligung des Karlsruher Instituts für Technologie (KIT) ist es nun gelungen, solche Nanostrukturen nachzubilden, die unabhängig vom Blickwinkel dieselbe Farbe erzeugen

Bildunterschrift: Die blaue Vogelspinne (Poecilotheria metallica) inspirierte Forscher zur
Herstellung nicht irisierender struktureller Farben. (Foto: ©Tom Patterson)

Strukturell erzeugte Farben sind im Gegensatz zu Farbpigmenten ungiftig, leuchtender und haltbarer, hatten bisher jedoch in der industriellen Fertigung einen großen Nachteil: Sie irisieren, das heißt, die wahrgenommene Farbe hängt vom Blickwinkel ab, wie etwa bei der Rückseite einer CD. Damit sind sie für viele Anwendungen unbrauchbar. Die lebhaften Farben im Tierreich dagegen sind oft vom Blickwinkel unabhängig. Das Gefieder des Eisvogels erscheint immer blau, egal, aus welchem Winkel man ihn betrachtet. Der Grund dafür liegt in den Nanostrukturen: Während regelmäßige Strukturen irisieren, erzeugen amorphe, also unregelmäßige, Strukturen immer dieselbe Farbe. Industriell ist aber nur die Fertigung regelmäßiger Nanostrukturen wirtschaftlich möglich.

Wissenschaftler aus den USA und Belgien um Radwanul Hasan Siddique vom KIT haben nun entdeckt, dass die blaue Vogelspinne nicht irisiert, obwohl auf ihren Haaren regelmäßige Nanostrukturen sitzen. In einer ersten Untersuchung fanden sie eine mehrschichtige, blumenähnliche Struktur, deren Reflexionsverhalten sie anschließend in Computersimulationen analysierten. Gleichzeitig fertigten sie mit Nano-3D-Druckern Modelle dieser Strukturen an und optimierten diese mithilfe der Simulationen. Letztendlich ist es ihnen gelungen, eine Struktur herzustellen, die sich am Blumenmuster der Vogelspinne orientiert und über einen Blickwinkel von 160 Grad die gleiche Farbe erzeugt. Das ist der größte Winkel, der jemals bei synthetischen strukturellen Farben erreicht wurde.

Neben dem mehrschichtigen Aufbau, der Punktsymmetrie und den Rillen
auf der Oberfläche sorgt vor allem die hierarchische Struktur (Blumeninneres mit aufgesetzten Blättern) für eine gleichmäßige Reflexionsintensität und verhindert dadurch die Farbänderungen.

Da über die Größe der „Blume“ sogar die resultierende Farbe selbst eingestellt werden kann, wird dieses Farbgebungsverfahren auch für die Industrie interessant. „Dies ist ein wichtiger Schritt hin zu einer Zukunft, in der strukturelle Farben die giftigen Pigmente in der Textil-, Verpackungs- und Kosmetikindustrie ersetzen“, sagt Radwanul Hasan Siddique vom Institut für Mikrostrukturtechnik am KIT, der inzwischen am California Institute of Technology arbeitet. Vor allem in der Textilindustrie sieht er einen kurzfristigen Einsatz als möglich.

Als größte Herausforderung auf dem Weg zur industriellen Nutzung sieht Dr. Hendrik Hölscher, Privatdozent am KIT, die Skalierbarkeit des Nano-3D-Drucks an, da nur wenige Firmen auf der Welt in der Lage sind, solche Drucke herzustellen. Durch die rasante Entwicklung auf diesem Gebiet werde sich dieses Problem in naher Zukunft aber sicherlich lösen lassen.

An der Forschung war auch die Öffentlichkeit beteiligt: Die Kosten für den 3D-Druck wurden über die Crowdfunding-Plattform experiment.com eingeworben. Ein englischsprachiges Video beschreibt dort die Forschung: https://experiment.com/projects/the-development-o.

 Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Weiterer Kontakt:
Simon Scheuerle
KIT-Abteilung Presse
Tel: 0721/608-48761
E-Mail: simon scheuerle∂kit edu

Source: Link

Cluster NMWP.NRW

Der Landescluster NanoMikroWerkstoffePhotonik.NRW handelt im öffentlichen Auftrag mit Sitz in Düsseldorf und entstand 2009 im Rahmen der Exzellenzinitiative der nordrhein-westfälischen Landesregierung zur Stärkung der Position NRWs in den Bereichen...more...