DeutschEnglish

Das Wasser macht den Unterschied

Für die Funktion biologischer Zellen ist es wichtig, in unterschiedliche Reaktionsräume unterteilt zu sein. Das geht mittels Membranen, aber auch ohne: Die spontane Entmischung bestimmter Arten von Biomolekülen führt zur Bildung sogenannter Kondensate. Warum und unter welchen Umständen sie sich bilden, ist Gegenstand der Forschung. Durch Computersimulationen konnten Prof. Dr. Lars Schäfer und Dr. Saumyak Mukherjee aus der Theoretischen Chemie der Ruhr-Universität Bochum einen oft übersehenen Mitspieler identifizieren: Wasser. Aufgrund ihrer Menge spielen die kleinen Wassermoleküle eine genauso wichtige Rolle wie die großen Biomoleküle beim molekularen Tauziehen der Triebkräfte, die hinter der Ausbildung der Kondensate stecken. Ihre Ergebnisse beschreiben die beiden Forscher in der Fachzeitschrift Nature Communications vom 21. September 2023.

Dichtes Gedränge 

Erst neuere Untersuchungen haben die Existenz der Kondensate als Reaktionsräume in Zellen belegt. „Das Innere dieser Kondensate ist unheimlich dicht gepackt, das heißt, es herrscht ein molekulares Gedränge biologischer Makromoleküle wie zum Beispiel Proteine und Nukleinsäuren“, erklärt Lars Schäfer. Da nur bestimmte Makromoleküle miteinander solche Kondensate ausbilden, können diese als spezifische Mikroreaktoren für ganz bestimmte biochemische Reaktionen fungieren, die in der Zelle ablaufen. „Daher überrascht es nicht, dass Störungen dieser Prozesse mit verschiedenen Krankheiten in Verbindung stehen“, sagt Schäfer.

David und Goliath 

Warum aber bilden sich diese Kondensate in der Zelle aus, und unter welchen Umständen? „Die zu Grunde liegenden Triebkräfte liegen letzten Endes verborgen in den chemischen Wechselwirkungen zwischen den verschiedenen Molekülen in der Zelle“, sagt Saumyak Mukherjee. „Computersimulationen können da Licht ins Dunkel bringen, sogar in atomarem Detail.“ Dabei stellte sich heraus, dass ein bisher oft übersehener Mitspieler im molekularen Wechselspiel eine wichtige Rolle spielt: Wasser.

Die Wassermoleküle, die sich im dichten Gedränge im Inneren der Kondensate befinden, haben andere Eigenschaften als die Wassermoleküle außerhalb. „Die Beschränkung der Wassermoleküle im Kondensat ist eine ungünstige Triebkraft, die Freiheit der Wassermoleküle außerhalb hingegen günstig. Letztere gewinnen dieses molekulare Tauziehen – wenn auch nur knapp“, erklärt Schäfer. Die Wassermoleküle spielen also eine wichtige Rolle für die Ausbildung von biomolekularen Kondensaten in Zellen, zusätzlich zu den oft beschriebenen Wechselwirkungen zwischen den Makromolekülen wie den Proteinen. „Es ist ein bisschen wie David und Goliath“, schmunzelt Mukherjee. „Hier sind die kleinen Wassermoleküle und dort die großen Proteinmoleküle – jedoch gibt es halt sehr viele Wassermoleküle, und gemeinsam leisten sie einen Beitrag zur Triebkraft, der genauso groß ist wie der der großen Proteine.“

Ruhr-Universität Bochum

Mitten in der dynamischen Metropolregion Ruhrgebiet im Herzen Europas gelegen ist die RUB mit ihren 20 Fakultäten Heimat von über 43.000 Studierenden aus über 130 Ländern.Ihren Erfolg in der Forschung verdankt die RUB der engen Verknüpfung der...mehr...